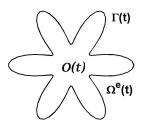
FEM-BEM coupling for wave propagation problems in unbounded domains

S. Falletta

Introduction and motivation

We want to study the effect that a moving obstacle has on the behavior of waves which impinge upon it.

Such a situation occurs in many practical contexts:


- rotating blades of an helicopter, the presence of which has to be radar detected;
- signals reflected by wind turbines;
- computation of flows about rotating components (propellers).

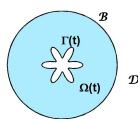
Problem setting

Let $\Omega^e(t) = \mathbb{R}^2 \setminus \overline{\mathcal{O}}(t)$ be the complement of a bounded rigid obstacle $\mathcal{O}(t) \subset \mathbb{R}^2$, whose location depends on t, and having a smooth boundary $\Gamma(t)$.

We denote by Ω_0^e the initial configuration of the geometry at time

$$\begin{cases} u_{tt}(\mathbf{x},t) - \Delta u(\mathbf{x},t) &= f(\mathbf{x},t) & \text{in } \Omega^e(t) \times (0,T) \\ u(\mathbf{x},t) &= 0 & \text{on } \Gamma(t) \times (0,T) \\ u(\mathbf{x},0) &= u_0(\mathbf{x}) & \text{in } \Omega_0^e \\ u_t(\mathbf{x},0) &= v_0(\mathbf{x}) & \text{in } \Omega_0^e. \end{cases}$$

To solve it by a finite element method


1) we truncate the infinite external domain by an artificial boundary \mathcal{B} ;

the artificial boundary divides $\Omega^e(t)$ into two subdomains:

• a finite computational domain $\Omega(t)$ (bounded internally by $\Gamma(t)$ and externally by \mathcal{B}) We impose on \mathcal{B} the exact non reflecting boundary condition given by the Boundary Integral Equation:

$$\frac{1}{2}u(\mathbf{x},t) = \mathcal{V}\lambda_{\mathcal{B}}(\mathbf{x},t) - \mathcal{K}u(\mathbf{x},t) \quad \mathbf{x} \in \mathcal{B},$$


ullet an infinite residual domain $\mathcal D$ (that does not depend on t)

The fictitious domain-Lagrange multiplier formulation

The **fictitious domain method** consists in:

- extending "artificially" the solution of the exterior problem inside the obstacle;
- solving the new problem in the whole extended domain $\widetilde{\Omega} := \Omega(t) \cup \mathcal{O}(t);$
- enforcing the Dirichlet boundary conditions by Lagrange multipliers.

Ex: Scattering of a wave by two rotating blades

Solution at $P \approx (0,4)$

Energy dissipation

15

S. Falletta, G. Monegato. A fictitious domain approach for wave propagation problems in unbounded domains.
S. Falletta, BEM coupling with the FEM-fictitious domain approach for the solution of the exterior Poisson problem and of the wave scattering by rotating rigid bodies.